Advantage 8-11-20 Ballance Agri-Nutrients Chemwatch Hazard Alert Code: 2 Issue Date: **15/06/2021** Print Date: **16/06/2021** L.GHS.NZL.EN Version No: **4.1.3.7**Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017 # SECTION 1 Identification of the substance / mixture and of the company / undertaking | ۲ | r | OC | u | Ct | Ia | er | ıτı | rie | r | |---|---|----|---|----|----|----|-----|-----|---| | | | | | | | | | | | Chemwatch: 5400-08 | Product name | Advantage 8-11-20 | |-------------------------------|-------------------| | Chemical Name | Not Applicable | | Chemical formula | Not Applicable | | Other means of identification | Not Available | #### Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Fertiliser. # Details of the supplier of the safety data sheet | | • | |---|-------------------------| | Registered company name | Ballance Agri-Nutrients | | Address 161 Hewletts Rd Mount Maunganui New Zealand | | | Telephone +64 800 222 090 | | | Fax Not Available | | | Website Not Available | | | Email customerservices-mount@ballance.co.nz | | # Emergency telephone number | Association / Organisation CHEMCALL | | |-------------------------------------|--| | Emergency telephone numbers | Freephone: 0800 CHEMCALL (0800 243 622) (24 Hours/ 7 Days) | | Other emergency telephone numbers | Not Available | # **SECTION 2 Hazards identification** # Classification of the substance or mixture Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Not regulated for transport of Dangerous Goods. # ChemWatch Hazard Ratings | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 0 | | | | Toxicity | 0 | | 0 = Minimum | | Body Contact | 2 | - 1 | 1 = Low | | Reactivity | 0 | 1 | 2 = Moderate | | Chronic | 0 | | 3 = High
4 = Extreme | | Classification [1] Eye Irritation Category 2, Acute Vertebrate Hazard Category 3 | | | |---|------------|--| | Legend: 1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/ | | | | Determined by Chemwatch using GHS/HSNO criteria | 6.4A, 9.3C | | # Label elements # Hazard pictogram(s) | Signal word | Warning | |-------------|---------| |-------------|---------| # Hazard statement(s) | H319 | Causes serious eye irritation. | |------|-------------------------------------| | H433 | Harmful to terrestrial vertebrates. | # Precautionary statement(s) Prevention | P280 Wear protective gloves, protective clothing, eye protection and face protection. | | |---|--| | P264 Wash all exposed external body areas thoroughly after handling. | | # Precautionary statement(s) Response | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | |----------------|--| | P337+P313 | If eye irritation persists: Get medical advice/attention. | # Precautionary statement(s) Storage Not Applicable # Precautionary statement(s) Disposal Not Applicable # **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |---|-----------|-------------------------------| | 7722-76-1 | 46 | ammonium phosphate. monobasic | | 7447-40-7 | 24 | potassium chloride | | 7778-80-5 | 22 | potassium sulfate | | 7783-28-0 | 5 | diammonium phosphate | | 57-13-6 | 3 | urea | | Legend: 1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Anno 4. Classification drawn from C&L * EU IOELVs available | | | # **SECTION 4 First aid measures** # Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | # Indication of any immediate medical attention and special treatment needed Treat symptomatically. # **SECTION 5 Firefighting measures** # **Extinguishing media** - There is no restriction on the type of extinguisher which may be used. Use extinguishing media suitable for surrounding area. # Special hazards arising from the substrate or mixture | Special nazards arising from the substrate or mixture | | | |---|--|--| | Fire Incompatibility | None known. | | | Advice for firefighters | | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. | | | Fire/Explosion Hazard | ▶ Non combustible. ▶ Not considered a significant fire risk, however containers may burn. Decomposition may produce toxic fumes of: hydrogen chloride nitrogen oxides (NOx) phosphorus oxides (POx) sulfur oxides (SOx) metal oxides May emit corrosive fumes. | | # **SECTION 6 Accidental release measures** # Personal precautions, protective equipment and emergency procedures # **Environmental precautions** See section 12 # Methods and material for containment and cleaning up | Minor Spills | Clean up all spills immediately. Avoid breathing dust and contact with skin and eyes. Wear protective clothing, gloves, safety glasses and dust respirator. Use dry clean up procedures and avoid generating dust. Sweep up, shovel up or Vacuum up (consider explosion-proof machines designed to be grounded during storage and use). Place spilled material in clean, dry, sealable, labelled container. | |--------------|---| | Major Spills | Moderate hazard. CAUTION: Advise personnel in area. Alert Emergency Services and tell them location and nature of hazard. Control personal contact by wearing
protective clothing. Prevent, by any means available, spillage from entering drains or water courses. Recover product wherever possible. IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. | ▶ If contamination of drains or waterways occurs, advise Emergency Services. Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 Handling and storage** | Precautions for safe handling | | |-------------------------------|---| | Safe handling | Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. | | Other information | Store in original containers. Keep containers securely sealed. Store in a cool, dry area protected from environmental extremes. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. | For major quantities: - Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams) - Figure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities #### Conditions for safe storage, including any incompatibilities # Suitable container - Lined metal can, lined metal pail/ can. - Plastic pail. - Polyliner drum. - Packing as recommended by manufacturer. - Check all containers are clearly labelled and free from leaks. - Glass container is suitable for laboratory quantities - Storage incompatibility - ► Avoid strong acids, bases Avoid storage with reducing agents. - Must not be stored together - May be stored together with specific preventions - May be stored together Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly. #### SECTION 8 Exposure controls / personal protection ### **Control parameters** Occupational Exposure Limits (OEL) # INGREDIENT DATA Not Available # **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |-------------------------------|----------|-----------|-------------| | ammonium phosphate, monobasic | 17 mg/m3 | 190 mg/m3 | 1,100 mg/m3 | | potassium sulfate | 20 mg/m3 | 220 mg/m3 | 1,300 mg/m3 | | diammonium phosphate | 20 mg/m3 | 210 mg/m3 | 1,300 mg/m3 | | urea | 30 mg/m3 | 280 mg/m3 | 1,700 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |----------------------------------|---------------|---------------| | ammonium phosphate,
monobasic | Not Available | Not Available | | potassium chloride | Not Available | Not Available | | potassium sulfate | Not Available | Not Available | | diammonium phosphate | Not Available | Not Available | | urea | Not Available | Not Available | ### Occupational Exposure Banding | Occupational Exposure Band Rating | Occupational Exposure Band Limit | |-----------------------------------|----------------------------------| | E | ≤ 0.01 mg/m³ | | E | ≤ 0.01 mg/m³ | | E | ≤ 0.01 mg/m³ | | | F | Notes: Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. # MATERIAL DATA # **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. # controls Appropriate engineering Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction. Chemwatch: **5400-08**Page **5** of **12**Version No: **4.1.3.1** #### Advantage 8-11-20 Issue Date: **15/06/2021**Print Date: **16/06/2021** • If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of: (a): particle dust respirators, if necessary, combined with an absorption cartridge; (b): filter respirators with absorption cartridge or canister of the right type; (c): fresh-air hoods or masks. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |--|------------------------------| | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s (500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. # Personal protection - Safety glasses with side shields. - Chemical goggles. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on
use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] Skin protection Eve and face protection #### See Hand protection below The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - · frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - · Contaminated gloves should be replaced. # Hands/feet protection - As defined in ASTM F-739-96 in any application, gloves are rated as: - Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min - · Fair when breakthrough time < 20 min - · Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. polychloroprene. Advantage 8-11-20 Page 6 of 12 Issue Date: 15/06/2021 Print Date: 16/06/2021 | | nitrile rubber. butyl rubber. fluorocaoutchouc. polyvinyl chloride. Gloves should be examined for wear and/ or degradation constantly. | |------------------|--| | Body protection | See Other protection below | | Other protection | Overalls. P.V.C apron. Barrier cream. Skin cleansing cream. Eye wash unit. | # Respiratory protection Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:001, ANSI Z88 or national equivalent) | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|------------------------| | up to 10 x ES | P1
Air-line* | - | PAPR-P1 | | up to 50 x ES | Air-line** | P2 | PAPR-P2 | | up to 100 x ES | - | P3 | - | | | | Air-line* | - | | 100+ x ES | - | Air-line** | PAPR-P3 | ^{* -} Negative pressure demand ** - Continuous flow A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended. - Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection - Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU) - Use approved positive flow mask if significant quantities of dust becomes airborne. - Try to avoid creating dust conditions. # **SECTION 9 Physical and chemical properties** # Information on basic physical and chemical properties | Appearance | Off-white pellets with no odour; soluble in water. | | | |--|--|---|----------------| | Physical state | Divided Solid | Relative density (Water = 1) | Not Available | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Applicable | | pH (as supplied) | >5 | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Applicable | | Initial boiling point and boiling range (°C) | Not Applicable | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Applicable | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Applicable | Surface Tension (dyn/cm or mN/m) | Not Applicable | | Lower Explosive Limit (%) | Not Applicable | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Applicable | Gas group | Not Available | | Solubility in water | Miscible | pH as a solution (%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | # **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | Chemwatch: **5400-08**Version No: **4.1.3.1** Advantage 8-11-20 Issue Date: **15/06/2021**Print Date: **16/06/2021** | Conditions to avoid | See section 7 | |----------------------------------|---------------| | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 Toxicological information** | Information on | toxicolo | gical | effects | |----------------|----------|-------|---------| |----------------|----------|-------|---------| The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Persons with impaired respiratory function, airway
diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. # Ingestion Inhaled The material has **NOT** been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. Irritation and skin reactions are possible with sensitive skin Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. ### Skin Contact Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. # Eye Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Long-term exposure to the product is not thought to produce chronic effects adverse to health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course. #### Chronic Long term exposure to high dust concentrations may cause changes in lung function (i.e. pneumoconiosis) caused by particles less than 0.5 micron penetrating and remaining in the lung. A prime symptom is breathlessness. Lung shadows show on X-ray. Dogs given daily doses of sodium phosphate dibasic for 9-22 weeks showed calcium deposits in the kidneys (nephrocalcinosis) with disseminated atrophy of the proximal tubule. Animals fed on sodium phosphate dibasic and potassium dihydrogen phosphate, in both short- and long-term studies, showed increased bone porosity; hyperparathyroidism and soft tissue calcification were also evident. | Advantage 8-11-20 | TOXICITY | IRRITATION | |---------------------|--|--| | | Not Available | Not Available | | | TOXICITY | IRRITATION | | ammonium phosphate, | dermal (rat) LD50: >5000 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | monobasic | Inhalation(Rat) LC50; >5 mg/l4h ^[1] | Skin: no adverse effect observed (not irritating) ^[1] | | | Oral(Rat) LD50; >2000 mg/kg ^[1] | | | potassium chloride | TOXICITY | IRRITATION | | | Oral(Mouse) LD50; ~117 mg/kg ^[1] | Eye (rabbit): 500 mg/24h - mild | | | TOXICITY | IRRITATION | | potassium sulfate | dermal (rat) LD50: >2000 mg/kg ^[1] | Not Available | | | Oral(Rat) LD50; >2000 mg/kg ^[1] | | | | TOXICITY | IRRITATION | | | dermal (rat) LD50: >5000 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | iammonium phosphate | Inhalation(Rat) LC50; >5 mg/l4h ^[1] | Skin: no adverse effect observed (not irritating) ^[1] | | | Oral(Rat) LD50; >2000 mg/kg ^[1] | | | urea | TOXICITY | IRRITATION | | | dermal (rat) LD50: 8200 mg/kg ^[2] | Eye: no adverse effect observed (not irritating) ^[1] | | | Oral(Rat) LD50; ~14 mg/kg ^[2] | Skin (human): 22 mg/3 d (I)- mild | | | | Skin: no adverse effect observed (not irritating) ^[1] | specified data extracted from RTECS - Register of Toxic Effect of chemical Substances #### POTASSIUM CHLORIDE The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. #### for sodium sulfate: Sulfate (and sodium) ions are important constituents of the mammalian body and of natural foodstuffs and there is a considerable daily turnover of both ions (several grams/day expressed as sodium sulfate). Near-complete absorption of dietary sulfates may occur at low concentration, depending on the counter-ion, but absorption capacity can be saturated at higher artificial dosages resulting in cathartic effects. Absorption through skin can probably be ignored since sodium sulfate is fully ionised in solution. One source suggests that very high levels of sulfate in urine may occur due to absorption from dust inhalation. At dietary levels, excretion is mainly in the urine. Sulfates are found in all body cells, with highest concentrations in connective tissues, bone and cartilage. Sulfates play a role in several important metabolic pathways, including those involved in detoxification processes. The acute toxicity (LD50) of sodium sulfate has not been reliably established but is probably far in excess of 5000 mg/kg. In an inhalation study with an aerosol, no adverse effects were found at 10 mg/m3. Also human data indicate a very low acute toxicity of sodium sulfate. Human clinical experience indicates that very high oral doses of sodium sulfate, 300 mg/kg bw up to 20 grams for an adult, are well tolerated, except from (intentionally) causing severe diarrhoea. WHO/FAO did not set an ADI for sodium sulfate. There is no data on acute dermal toxicity, but this is probably of no concern because of total ionisation in solution. # POTASSIUM SULFATE Sodium sulfate is not irritating to the skin and slightly irritating to the eyes. Respiratory irritation has never been reported. Based on wide practical experience with sodium sulfate, in combination with the natural occurrence of sulfate in the body, sensitising effects are highly unlikely. No suitable dermal and inhalation repeated-dose toxicity studies are available. Valid oral repeated dose toxicity studies with 21, 28 and 35 day studies in hens and pigs are available. Toxicity was confined to changes in bodyweight, water and feed intake and diarrhoea. These changes occurred only at very high doses of sodium sulfate. In ruminants, high concentrations of sulfate in food may result in the formation of toxic amounts of sulfites by bacterial reduction the rumen, leading to poly-encephalomalacia. The available data do not allow the derivation of a NOAEL. Based on available consumer data, a daily dose of around 25 mg/kg/day is well tolerated by humans. There are no data on *in vitro* and *in vivo* genotoxicity, apart from a negative Ames test. There is no valid oral carcinogenicity study. Limited data from experimental studies support the notion that a substance that is abundantly present in and essential to the body is unlikely to be carcinogenic. Limited data of poor validity did not provide an indication of toxicity to reproduction. Altered sleep time, change in motor activity, antipsychosis, dyspnea, methaemoglobinaemia, convulsions, lymphomas recorded. Carcinogenic by RTECS criteria. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. For urea: There is little data that relates urea to human health other than its use in dermatology and some more limited applications in clinical medicine. The use of urea (at 10% concentration or less) in ointments and creams to treat dry skin has been widespread, and long term follow-up studies have indicated that the substance is nonallergenic and virtually free from side effects. Among other clinical therapeutic uses, the treatment of inappropriate secretion of antidiuretic hormone (SIADH) should be noted, because its chronic form has involved long term oral administration of large amounts of urea. Most patients have tolerated urea well, although diarrhoea is sometimes reported after ingestion of 60-90 g/day. The possibility exists that infection of H. pylori in human stomach may aggravate local effects by urea because of ammonia generation. Acute toxicity: The acute toxicity by urea is well delineated by the oral route. Toxicity is low in mammals other than ruminants, especially cattle, and sheep, in which the rumen micro-organisms contain urease activity and metabolise urea to ammonia at a high rate. In mice and rats,
urea is of low toxicity even by the subcutaneous and intravenous route. # UREA Repeated dose toxicity: No well-conducted repeated dose toxicity studies on urea were located. Chronic toxicity and carcinogenicity screening studies in mice and rats fed with 4500, 9000 or 45000 ppm in diet (up to about 6750 mg/kg body weight/day for mice and about 2250 mg/kg body weight/day for rats) did not uncover any treatment-related toxic syndromes in the various organs studied. Neither was any weight depression noted at terminal necropsy for animals of either sex or species at any dose levels. Thus the NOAELs were about 6750 mg/kg body weight/day for mice and about 2250 mg/kg body weight/day for rats. Repeated dose toxicity studies with rats by skin application over 4 weeks and 25 weeks were conducted using urea ointment at 10%, 20% and 40% concentrations, and no consistent treatment-related toxic effects were found. The ointments were applied on a 20 cm2 area of the back skin; it is concluded that the repeated dose toxicity of urea by dermal route is low. Reproductive/developmental toxicity: The studies cited under repeated dose toxicity did not indicate any toxic effects on the reproductive organs of mice and rats. No adequate teratogenicity/developmental toxicity studies of urea with mammals were located. According to one rat study, 50 g/kg body weight/day administered by gavage in two doses 12 hours apart for an average of 14 days did not cause outstanding (external) teratogenicity; the mean birthweight of the newborn was lower but the litter size greater. Injection of urea into the air sack of eggs shows that urea is toxic to the development of chick embryo. No NOAEL can be given for the reproductive/developmental toxicity of urea because appropriate studies are lacking. **Genetic toxicity:** Urea has been negative in several appropriately conducted bacterial mutagenicity tests. Urea caused DNA single strand breaks in mammalian cells in vitro and was clastogenic for mammalian cells in vitro and in vivo but only at concentrations much beyond the physiological range (about 50-100 higher concentrations than found in human blood). The mechanism of genotoxicity is probably non-specific (e.g. difference in osmotic pressure across the cell membrane). **NOTE:** Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA. #### AMMONIUM PHOSPHATE, MONOBASIC & DIAMMONIUM PHOSPHATE & UREA Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production #### AMMONIUM PHOSPHATE, MONOBASIC & DIAMMONIUM PHOSPHATE No significant acute toxicological data identified in literature search. | Acute Toxicity | × | Carcinogenicity | × | |-------------------------------|---|------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | × | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | X | Chemwatch: **5400-08**Version No: **4.1.3.1** Page 9 of 12 Advantage 8-11-20 Issue Date: **15/06/2021**Print Date: **16/06/2021** | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | |-----------------------------------|---|--------------------------|---| | Mutagenicity | × | Aspiration Hazard | × | **Legend:** X − Data either not available or does not fill the criteria for classification ✓ − Data available to make classification # **SECTION 12 Ecological information** # Toxicity | | Endpoint | Test Duration (hr) | Species | Value | Source | |----------------------------------|-------------------|------------------------------------|---|--|-----------------| | Advantage 8-11-20 | Not
Available | Not Available | Not Available | Not
Available | Not
Availabl | | | Endpoint | Test Duration (hr) | Species | Value | Sourc | | | EC50(ECx) | 72h | Algae or other aquatic plants | >100mg/ | 2 | | ammonium phosphate,
monobasic | EC50 | 72h | Algae or other aquatic plants | >100mg/ | 2 | | monobasic | LC50 | 96h | Fish | >100mg/ | 2 | | | EC50 | 48h | Crustacea | >100mg/ | 2 | | | Endpoint | Test Duration (hr) | Species | Value | Sourc | | | NOEC(ECx) | 25h | Fish | 9.319mg/L | 4 | | | EC50 | 72h | Algae or other aquatic plants | >100mg/l | 2 | | potassium chloride | LC50 | 96h | Fish | 750-1020mg/l | 4 | | | EC50 | 48h | Crustacea | 95.3-170.7mg/ | 4 | | | EC50 | 96h | Algae or other aquatic plants | 894.6mg/L | 4 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | NOEC(ECx) | 1h | Algae or other aquatic plants | 0.014mg/L | 4 | | | EC50 | 72h | Algae or other aquatic plants | 1430-2900mg/ | 2 | | potassium sulfate | LC50 | 96h | Fish | 510-880mg/l | 4 | | | EC50 | 48h | Crustacea | 890mg/I | 1 | | | EC50 | 96h | Algae or other aquatic plants | 1742.5mg/L | 4 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50(ECx) | 72h | Algae or other aquatic plants | >100mg/l | 2 | | diammonium phosphate | EC50 | 72h | Algae or other aquatic plants | >100mg/ | 2 | | | LC50 | 96h | Fish | >100mg/l | 2 | | | EC50 | 48h | Crustacea | >100mg/ | 2 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | NOEC(ECx) | 168h | Fish | 200mg/l | 2 | | urea | LC50 | 96h | Fish | >1000mg/l | 4 | | | EC50 | 48h | Crustacea | 6119-7061mg/ | 4 | | Logondi | Future et ed fire | 4 IIIOLID Taviaita Data 0 Funas FO | CHA Pagistared Substances Ecotoxical agical | to to consider a contract of the first th | CDUA/INI O | Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Harmful to aquatic organisms. DO NOT discharge into sewer or waterways. # Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |----------------------------------|-------------------------|------------------| | ammonium phosphate,
monobasic | нівн | HIGH | | potassium chloride | HIGH | HIGH | | urea | LOW | LOW | # **Bioaccumulative potential** | Ingredient | Bioaccumulation | | |----------------------------------|------------------------|--| | ammonium phosphate,
monobasic | LOW (LogKOW = -0.7699) | | | potassium chloride | LOW (LogKOW = -0.4608) | | | urea | LOW (BCF = 10) | | Page 10 of 12 Advantad | ge 8-11-20 | Print Date: 16/06/2021 | |------------|------------------------| | | | Issue Date: 15/06/2021 | Ingredient | Mobility | |----------------------------------|-------------------| | ammonium phosphate,
monobasic | HIGH (KOC = 1) | |
potassium chloride | LOW (KOC = 14.3) | | urea | LOW (KOC = 4.191) | # **SECTION 13 Disposal considerations** #### Waste treatment methods Product / Packaging disposal - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - ▶ Recycle wherever possible or consult manufacturer for recycling options. - ► Consult State Land Waste Management Authority for disposal - Bury residue in an authorised landfill. - Recycle containers if possible, or dispose of in an authorised landfill. Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017 ### **Disposal Requirements** Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled. The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. Only dispose to the environment if a tolerable exposure limit has been set for the substance. Only deposit the hazardous substance into or onto a landfill or sewage facility or incinerator, where the hazardous substance can be handled and treated appropriately. # **SECTION 14 Transport information** #### Labels Required | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (UN): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |-------------------------------|---------------| | ammonium phosphate, monobasic | Not Available | | potassium chloride | Not Available | | potassium sulfate | Not Available | | diammonium phosphate | Not Available | | urea | Not Available | # Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |----------------------------------|---------------| | ammonium phosphate,
monobasic | Not Available | | potassium chloride | Not Available | | potassium sulfate | Not Available | | diammonium phosphate | Not Available | | urea | Not Available | # **SECTION 15 Regulatory information** # Safety, health and environmental regulations / legislation specific for the substance or mixture This substance is to be managed using the conditions specified in an applicable Group Standard | HSR Number | Group Standard | | |------------|---|--| | HSR002571 | Fertilisers Subsidiary Hazard Group Standard 2020 | | Please refer to Section 8 of the SDS for any applicable tolerable exposure limit or Section 12 for environmental exposure limit. Advantage 8-11-20 Issue Date: 15/06/2021 Print Date: 16/06/2021 ammonium phosphate, monobasic is found on the following regulatory lists New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals potassium chloride is found on the following regulatory lists New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals potassium sulfate is found on the following regulatory lists New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals diammonium phosphate is found on the following regulatory lists New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals urea is found on the following regulatory lists New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Approved Hazardous Substances with controls New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) of Chemicals - Classification Data New Zealand Inventory of Chemicals (NZIoC) New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification **Hazardous Substance Location** Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Quantities | | |----------------|----------------|--| | Not Applicable | Not Applicable | | #### Certified Handler Version No: 4.1.3.1 Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Class of substance | Quantities | |--------------------|----------------| | Not Applicable | Not Applicable | Refer Group Standards for further information # Maximum quantities of certain hazardous substances permitted on passenger service vehicles Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017. | Hazard Class | Gas (aggregate water capacity in mL) | Liquid (L) | Solid (kg) | Maximum quantity per package for each classification | |----------------|--------------------------------------|----------------|----------------|--| | Not Applicable | # **Tracking Requirements** Not Applicable # **National Inventory Status** | National Inventory | Status | | |--|---|--| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | | Canada - DSL | Yes | | | Canada - NDSL | No (ammonium phosphate, monobasic; potassium chloride; potassium sulfate; urea) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS / NLP | Yes | | | Japan - ENCS | Yes | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | Yes | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | Yes | | | Vietnam - NCI | Yes | | | Russia - FBEPH | Yes | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | | # **SECTION 16 Other information** | Revision Date | 15/06/2021 | |---------------|------------| | Initial Date | 19/03/2020 | Advantage 8-11-20 Issue Date: 15/06/2021 Print Date: 16/06/2021 #### **SDS Version Summary** | Version | Date of Update | Sections Updated | |---------|----------------|---| | 3.1.1.1 | 15/04/2021 | Classification change due to full database hazard calculation/update. | | 3.1.2.1 | 29/04/2021 | Regulation Change | | 3.1.2.2 | 30/05/2021 | Template Change | | 3.1.2.3 | 04/06/2021 | Template Change | | 3.1.2.4 | 05/06/2021 | Template Change | | 3.1.2.5 | 09/06/2021 | Template Change | | 3.1.2.6 | 11/06/2021 | Template Change | | 3.1.3.6 | 14/06/2021 | Regulation Change | | 4.1.3.6 | 15/06/2021 | Classification, Name | | 4.1.3.7 | 15/06/2021 | Template Change | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of
Potentially Hazardous Chemical and Biological Substances # This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.